Demonstrati ca oricare ar fi \( x,y,z \in (-1, \infty) \), are loc inegalitatea
\( \frac{(x+1)^2+yz-1}{y+z+2}+\frac{(y+1)^2+xz-1}{ x+z+2}+\frac{(z+1)^2+xy-1}{x+y+2} \geq x+y+z \).
Claudiu Coanda, Concursul "Ion Ciolac", 2005
Inegalitate cu variabile mai mari ca -1.
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate cu variabile mai mari ca -1.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)