Inegalitate cu variabile mai mari ca -1.
Posted: Wed Dec 17, 2008 9:50 am
Demonstrati ca oricare ar fi \( x,y,z \in (-1, \infty) \), are loc inegalitatea
\( \frac{(x+1)^2+yz-1}{y+z+2}+\frac{(y+1)^2+xz-1}{ x+z+2}+\frac{(z+1)^2+xy-1}{x+y+2} \geq x+y+z \).
Claudiu Coanda, Concursul "Ion Ciolac", 2005
\( \frac{(x+1)^2+yz-1}{y+z+2}+\frac{(y+1)^2+xz-1}{ x+z+2}+\frac{(z+1)^2+xy-1}{x+y+2} \geq x+y+z \).
Claudiu Coanda, Concursul "Ion Ciolac", 2005