Ecuatie de gradul II

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Ecuatie de gradul II

Post by alex2008 »

Se da ecuatia \( x^2-5x-2=0 \) cu radacinile \( x_1,x_2 \) . Sa se afle valoarea expresiei : \( E=\frac{2x_1^3-3x_1^2+1}{x_1^3-5x_1^2}+\frac{2x_2^3-3x_2^2+1}{x_2^3-5x_2^2} \) .
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

O remarca. Pentru o ecuatie polinomiala de grad \( n\ge 2 \) , orice putere naturala \( x_s^{n+p}\ ,\ p\in \mathbb N \) a unei

radacini \( x_s\ ,\ s\in\overline {1,n} \) se poate exprima in functie de puterile sale inferioare lui \( n\ , \) adica \( x_s^{n+p}=\sum_{k=0}^{n-1}A_kx_s^{k}\ . \)

De exemplu, pentru ecuatia de gradul doi \( x^2-mx+n=0 \) avem \( x_k^{2+p}=mx_k^{1+p}-nx_k^p\ ,\ k\in\overline {1,2}\ ,\ p\in\mathbb N \) .

\( x_k^2=mx_k-n \)

\( x_k^3=mx_k^2-nx_k=m\left(mx_k-n\right)-nx_k=\left(m^2-n\right)x_k-mn \)

\( x_k^4=mx_k^3-nx^2_k=m\left[\left(m^2-n\right)x_k-mn\right]-n\left(mx_k-n\right)=m\left(m^2-2n\right)x_k+n\left(n-m^2\right) \)

etc.
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Post by mihai miculita »

\( \mbox{Nu strica putina teorie in plus! Aici merge insa mai simplu: }\\
x_1^2-5x_1-2=0\Rightarrow x_1^3-5x_1^2=2x_1 \mbox{ si analog: } x_2^3-5x_2=2x_2\Rightarrow E=\frac{2x_1^3-3x_1^2+1}{x_1^3-5x_1^2}+\frac{2x_2^3-3x_2^2+1}{x_2^3-5x_2^2}=
\frac{2.(x_1^3-5x_1^2)+7.x_1^2+1}{x_1^3-5x_1^2}+\frac{2.(x_2^3-5x_2^2)+7x_2^2+1}{x_2^3-5x_2^2}=\\
=4+\frac{7.x_1^2+1}{x_1^3-5x_1^2}+\frac{7x_2^2+1}{x_2^3-5x_2^2}=4+\frac{7.x_1^2+1}{2x_1}+\frac{7.x_2^2+1}{2x_2}=4+\frac{7}{2}.(x_1+x_2)+\frac{x_1+x_2}{2x_1x_2}. \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Evident, esti neinspirat sa nu speculezi particularitatea problemei (ca in cazul de fata)
ca sa nu zic nebun si sa mergi in pas cadentat pe drumul indicat de vreo metoda generala ...
Oi fi tu elev bine instruit de vreun tambur major, dar esti lipsit de initiativa in situatii particulare.
Asa ca este bine zis - "in general nu strica putina teorie in plus, insa aici merge mai simplu" ....

Noapte buna si numai bine, dl. profesor Miculita.
Post Reply

Return to “Clasa a 9-a”