Sa se demonstreze ca pentru orice\( x,y,z\in[0,1) \) are loc inegalitatea :
\( \frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}\ge (1+\frac{x+y+z}{3})(\frac{1}{1-xy}+\frac{1}{1-yz}+\frac{1}{1-zx}). \)
Inegalitate cu variabile subunitare
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutie!
Din Inegalitatea mediilor obtinem ca:
\( \sum_{cyc}\frac{1}{1-xy}\leq\sum_{cyc}\frac{1}{1-\frac{x^2+y^2}{2}}=\sum_{cyc}\frac{2}{(1-x^2)+(1-y^2)}=\sum_{cyc}\frac{2}{\frac{1}{\frac{1}{1-x^2}}+\frac{1}{\frac{1}{1-y^2}}}\leq\sum_{cyc}\frac{\frac{1}{1-x^2}+\frac{1}{1-y^2}}{2}=\sum_{cyc}\frac{1}{1-x^2}. \) Am aplicat Inegalitatea mediilor (AM-HM).
Mai ramane sa demonstram ca:
\( (\sum_{cyc}\frac{1}{1-x^2})(\sum_{cyc}1+x)\leq 3(\sum_{cyc}\frac{1}{1-x}) \)
WLOG: \( x\geq y\geq z \). Deci tripletele: \( (\frac{1}{1-x^2};\frac{1}{1-y^2};\frac{1}{1-z^2}) \) si \( (1+x;1+y;1+z) \) sunt la fel ordonate.
Deci din Inegalitatea lui Cebasev:
\( \Longrightarrow (\sum_{cyc}\frac{1}{1-x^2})(\sum_{cyc}1+x)\leq 3(\sum_{cyc}\frac{1+x}{1-x^2})=3(\sum_{cyc}\frac{1}{1-x}). \)
\( \sum_{cyc}\frac{1}{1-xy}\leq\sum_{cyc}\frac{1}{1-\frac{x^2+y^2}{2}}=\sum_{cyc}\frac{2}{(1-x^2)+(1-y^2)}=\sum_{cyc}\frac{2}{\frac{1}{\frac{1}{1-x^2}}+\frac{1}{\frac{1}{1-y^2}}}\leq\sum_{cyc}\frac{\frac{1}{1-x^2}+\frac{1}{1-y^2}}{2}=\sum_{cyc}\frac{1}{1-x^2}. \) Am aplicat Inegalitatea mediilor (AM-HM).
Mai ramane sa demonstram ca:
\( (\sum_{cyc}\frac{1}{1-x^2})(\sum_{cyc}1+x)\leq 3(\sum_{cyc}\frac{1}{1-x}) \)
WLOG: \( x\geq y\geq z \). Deci tripletele: \( (\frac{1}{1-x^2};\frac{1}{1-y^2};\frac{1}{1-z^2}) \) si \( (1+x;1+y;1+z) \) sunt la fel ordonate.
Deci din Inegalitatea lui Cebasev:
\( \Longrightarrow (\sum_{cyc}\frac{1}{1-x^2})(\sum_{cyc}1+x)\leq 3(\sum_{cyc}\frac{1+x}{1-x^2})=3(\sum_{cyc}\frac{1}{1-x}). \)
Feuerbach
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani