Cristian Calude

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Cristian Calude

Post by alex2008 »

Sa se determine numarul de elemente ale multimii A=\( \{x\in \mathb{Q}\ |\ x=\frac{n+1}{n^2-3n+8} , n\in\mathb{Z} , |n|<10 \} \)
. A snake that slithers on the ground can only dream of flying through the air.
red_dog
Euclid
Posts: 26
Joined: Wed Sep 26, 2007 8:33 pm

Post by red_dog »

Cautam perechi \( m,n, \ |m|,|n|<10, \ m\ne n \) pentru care
\( \frac{m-1}{m^2-3m+8}=\frac{n+1}{n^2-3n+8} \)
Obtinem \( (n-m)(mn+m+n-11)=0\Rightarrow mn+m+n-11=0 \)
\( m=\frac{11-n}{n+1}=-1+\frac{12}{n+1} \)
Rezulta perechile \( (5,1), \ (-7,-3), \ (3,2), \ (-5,-4), \ (2,3), \ (-4,-5), \ (1,5), \ (-3,-7) \) pentru care se obtin 4 valori ale lui x care se repeta.
Atunci, din cele 19 valori posibile ale lui n, pentru 15 din ele se obtin valori distincte ale lui x. Deci multimea are 15 elemente.
Post Reply

Return to “Clasa a 8-a”