Inegalitate rationala conditionata

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate rationala conditionata

Post by Marius Mainea »

Fie a,b,c>0 cu \( \sum{\frac{a}{b+c+1}}=1 \). Demonstrati ca

\( \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge 1 \)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Solutie. Fara a leza generalitatea putem presupune ca \( a= \min (a,b,c) \). Atunci \( a\le b\le c \) si \( \frac{1}{b+c+1}\le\frac{1}{c+a+1}\le\frac{1}{a+b+1} \). Scriem inegalitatea rearanjamentelor de doua ori si obtinem:

\( \frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}=1 (1) \)

si

\( \frac{b}{a+b+1}+\frac{c}{b+c+1}+\frac{a}{c+a+1}\le\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}=1 (2) \).

Din \( (1) \) si \( (2) \) avem:

\( \frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\le2\Leftrightarrow3-\left(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\right)\le2\Leftrightarrow \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge1 . \qed \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”