Daca \( f,g:\[ a,b \] \rightarrow \mathbb {R} \) sunt derivabile pe \( \[ a,b \] \) si daca \( f(a)=g(a)=0 \), atunci exista un punct \( c \in \( a,b \) \) astfel incat sa avem
\( f^{\prime}(c)\cdot {\int_a^b g(t)dt} = g^{\prime}(c) \cdot {\int_a^b f(t)dt} \)
Tudorel Lupu, GM
f(a)=g(a)=0
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
f(a)=g(a)=0
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Cazul 1) Daca exista \( d\in(a,b] \) astfel incat \( f(d)=g(d)=0 \) atunci aplicam teorema lui Rolle functiei \( g(x)=f(x)\int_a^bg(t)dt-g(x)\int_a^bf(t)dt \) pe intervalul [a,d].
Cazul 2) \( f(x)\neq 0 \) sau \( g(x)\neq 0 \) \( (\forall)x\in (a,b] \)
Aplicand teorema lui Cauchy functiilor \( x \longrightarrow \int_a^xg(t)dt,x \longrightarrow \int_a^xf(t)dt \) obtinem un punct \( d\in (a,b) \) astfel incat
\( f(d)\int_a^bg(t)dt=g(d)\int_a^bf(t)dt \) (*)
Aplicand inca o data teorema lui Cauchy functiilor \( x \longrightarrow g(x),x \longrightarrow f(x) \) obtinem un punct \( c\in (a,d) \) astfel incat
\( f^{\prime}(c)g(d)=g^{\prime}(c)f(d) \) (**)
Presupunand ca \( g(d)\neq 0 \) , inmultind relatia (*) cu \( g^{\prime}(c) \) , folosind (**) si simplificand prin g(d) obtinem concluzia.
Analog daca \( f(d)\neq 0 \).
Cazul 2) \( f(x)\neq 0 \) sau \( g(x)\neq 0 \) \( (\forall)x\in (a,b] \)
Aplicand teorema lui Cauchy functiilor \( x \longrightarrow \int_a^xg(t)dt,x \longrightarrow \int_a^xf(t)dt \) obtinem un punct \( d\in (a,b) \) astfel incat
\( f(d)\int_a^bg(t)dt=g(d)\int_a^bf(t)dt \) (*)
Aplicand inca o data teorema lui Cauchy functiilor \( x \longrightarrow g(x),x \longrightarrow f(x) \) obtinem un punct \( c\in (a,d) \) astfel incat
\( f^{\prime}(c)g(d)=g^{\prime}(c)f(d) \) (**)
Presupunand ca \( g(d)\neq 0 \) , inmultind relatia (*) cu \( g^{\prime}(c) \) , folosind (**) si simplificand prin g(d) obtinem concluzia.
Analog daca \( f(d)\neq 0 \).
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Ok, dar e derutantă referirea la Cauchy. Se aplică pur şi simplu Rolle pentru \( (f(b)-f(a))g-(g(b)-g(a))f \).Marius Mainea wrote:Teorema lui Cauchy are loc daca nu se impune conditia ca derivata sa fie nenula, dar cu conditia ca relatia din concluzie sa fie scrisa fara fractii, adica \( (f(b)-f(a))g^{\prime}(c)=(g(b)-g(a))f^{\prime}(c) \).
Se aplica teorema lui Rolle.
- Ciprian Oprisa
- Pitagora
- Posts: 55
- Joined: Tue Feb 19, 2008 8:01 pm
- Location: Lyon sau Cluj sau Baia de Cris
Am gasit si o solutie ce se bazeaza doar pe teorema de medie:
Fie \( A=\int\limits_a^b f(t)dt \) si \( B=\int\limits_a^b g(t)dt \).
Luam \( \alpha(t)=f^\prime(t)\cdot B - g^\prime(t)\cdot A \).
Problema se reduce la a arata ca \( \exists c \) a.i. \( \alpha(c)=0 \).
Fie \( \beta(x)=\int\limits_a^x \alpha(t)dt=B\int\limits_a^x f^\prime(t)dt-A\int\limits_a^x g^\prime(t)dt=Bf(x)-Ag(x) \).
\( \int\limits_a^b \beta(x)dx=B\int\limits_a^b f(x)dx - A\int\limits_a^b g(x)dx=BA-AB=0 \).
\( \Rightarrow \exists \xi \) a.i. \( \beta(\xi)=0 \).
\( \Rightarrow \int\limits_a^\xi \alpha(t)dt=0\Rightarrow \exists c \) a.i. \( \alpha(c)=0 \).
Fie \( A=\int\limits_a^b f(t)dt \) si \( B=\int\limits_a^b g(t)dt \).
Luam \( \alpha(t)=f^\prime(t)\cdot B - g^\prime(t)\cdot A \).
Problema se reduce la a arata ca \( \exists c \) a.i. \( \alpha(c)=0 \).
Fie \( \beta(x)=\int\limits_a^x \alpha(t)dt=B\int\limits_a^x f^\prime(t)dt-A\int\limits_a^x g^\prime(t)dt=Bf(x)-Ag(x) \).
\( \int\limits_a^b \beta(x)dx=B\int\limits_a^b f(x)dx - A\int\limits_a^b g(x)dx=BA-AB=0 \).
\( \Rightarrow \exists \xi \) a.i. \( \beta(\xi)=0 \).
\( \Rightarrow \int\limits_a^\xi \alpha(t)dt=0\Rightarrow \exists c \) a.i. \( \alpha(c)=0 \).
Un lucru este ceea ce este, nu ceea ce pare a fi.