Inegalitate conditionata

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Inegalitate conditionata

Post by maxim bogdan »

Fie \( a,b,c>0 \) astfel incat \( \sum_{cyc}\frac{a}{b+c+1}=1. \) Demonstrati ca urmatoarea inegalitatea este satisfacuta:

\( \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\geq 1. \)
Feuerbach
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Vezi aici
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Schimbarea conditiei conduce la urmatoarea inegalitate:

,,Fie a,b,c numere pozitive astfel incat abc=1. Sa se arate ca:

\( \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le 1 \)
''
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Post by maxim bogdan »

Marius Mainea wrote:Schimbarea conditiei conduce la urmatoarea inegalitate:

,,Fie a,b,c numere pozitive astfel incat abc=1. Sa se arate ca:

\( \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le 1 \)
''
Este suficient sa punem conditia \( abc\geq 1 \) si obtinem cunoscuta inegalitatea IMAR 2005, care se reduce la a demonstra inegalitatea sugerata de dumneavoasta, care la randul ei a fost data la Tournament of towns 1997.
Feuerbach
Post Reply

Return to “Clasa a IX-a”