i) Fie \( A, B \in M_{2n+1}(\mathbb{C}) \) cu \( A^2-B^2=I_{2n+1} \). Aratati ca \( \det(AB-BA)=0 \).
ii) Gasiti \( A, B \in M_2(\mathbb{C}) \) cu \( A^2-B^2=I_2 \), dar \( \det(AB-BA)\neq 0 \).
GMB, subiectul 2, OLM 2009 Constanta
Matrice de ordin impar
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
Andrei Velicu
- Euclid
- Posts: 27
- Joined: Wed Oct 17, 2007 9:20 am
- Location: Constanta
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Matrice de ordin impar
(i) Folosim relatia \( \det(XY-I_k)=\det(YX-I_k) \) pentru orice matrice de ordin k oarecare.
Asadar \( \det(AB-BA)=\det[(A-B)(A+B)-I_n]=\det[(A+B)(A-B)-I_n]=\det(BA-AB)=(-1)^{2n+1}\det(AB-BA) \) si de aici concluzia.
Asadar \( \det(AB-BA)=\det[(A-B)(A+B)-I_n]=\det[(A+B)(A-B)-I_n]=\det(BA-AB)=(-1)^{2n+1}\det(AB-BA) \) si de aici concluzia.