Limita cu radicali de ordin k

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Andrei Velicu
Euclid
Posts: 27
Joined: Wed Oct 17, 2007 9:20 am
Location: Constanta

Limita cu radicali de ordin k

Post by Andrei Velicu »

Sa se calculeze \( \displaystyle\lim_{n\to\infty} n(\sqrt[k]{n^k+an^{k-1}}+\sqrt[k]{n^k-an^{k-1}}-2n) \), unde \( k\in\mathbb{N}^{*},k\ge 2 \) si \( a\in \mathbb{R}_+^* \).

Dorin Arventiev, subiectul 3, OLM 2009 Constanta
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand \( \frac{1}{n}=x_n \) reducem limita la calculul limitei

\( \lim_{x\to 0}\frac{\sqrt[k]{1+ax}+\sqrt[k]{1-ax}-2}{x^2} \)

care este egala cu \( \frac{a^2(1-k)}{k^2} \).
Post Reply

Return to “Analiza matematica”