Se stie ca numerele reale pozitive \( a,b,c \) au proprietatea ca \( a+b+c=abc+2 \). Demonstrati ca \( \max \{a,b,c} \ge 1. \)
Valentin Vornicu, lista scurta, 2004
max{a,b,c} \ge 1
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
max{a,b,c} \ge 1
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: max{a,b,c} \ge 1
Presupunem prin absurd ca \( a,b,c\in (0,1) \) si notamClaudiu Mindrila wrote:Se stie ca numerele reale pozitive \( a,b,c \) au proprietatea ca \( a+b+c=abc+2 \). Demonstrati ca \( \max \{a,b,c} \ge 1. \)
Valentin Vornicu, lista scurta, 2004
\( a=x+1 ,b=y+1 ,c=z+1;x,y,z\in(-1,0) \)
Atunci relatia din enunt devine:
\( x+y+z+3=xyz+xy+yz+zx+x+y+z+3 \) de unde
\( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-1 \)
ceea ce este o contradictie.