Sa se arate ca in orice triunghi avem :
\( (p-a)^3(p-c)+(p-b)^3(p-a)+(p-c)^3(p-b)\ge S^2 \)
Stefan Smarandache G.M.
Inegalitate geometrica 3
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Impartind intai prin \( (p-a)(p-b)(p-c) \) si apoi prin \( p \), inegalitatea data devine:
\( \frac{\left(p-a\right)^{2}}{p-b}+\frac{\left(p-b\right)^{2}}{p-c}+\frac{\left(p-c\right)^{2}}{p-a}\ge\frac{S^{2}}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}\Leftrightarrow\frac{1}{p}\left(\frac{\left(p-a\right)^{2}}{p-b}+\frac{\left(p-b\right)^{2}}{p-c}+\frac{\left(p-c\right)^{2}}{p-a}\right)\ge\frac{S^{2}}{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=1 \).
Aceasta ultima inegalitate este adevarata, deoarece conform inegalitatii Cauchy-Buniakowski-Schwarz avem:
\( \frac{1}{p}\left(\frac{\left(p-a\right)^{2}}{p-b}+\frac{\left(p-b\right)^{2}}{p-c}+\frac{\left(p-c\right)^{2}}{p-a}\right)\ge\frac{1}{p}\cdot\frac{\left(3p-\left(a+b+c\right)\right)^{2}}{3p-\left(a+b+c\right)}=\frac{1}{p}\left(3p-\left(a+b+c\right)\right)=\frac{1}{p}\cdot p=1 \).
\( \frac{\left(p-a\right)^{2}}{p-b}+\frac{\left(p-b\right)^{2}}{p-c}+\frac{\left(p-c\right)^{2}}{p-a}\ge\frac{S^{2}}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}\Leftrightarrow\frac{1}{p}\left(\frac{\left(p-a\right)^{2}}{p-b}+\frac{\left(p-b\right)^{2}}{p-c}+\frac{\left(p-c\right)^{2}}{p-a}\right)\ge\frac{S^{2}}{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=1 \).
Aceasta ultima inegalitate este adevarata, deoarece conform inegalitatii Cauchy-Buniakowski-Schwarz avem:
\( \frac{1}{p}\left(\frac{\left(p-a\right)^{2}}{p-b}+\frac{\left(p-b\right)^{2}}{p-c}+\frac{\left(p-c\right)^{2}}{p-a}\right)\ge\frac{1}{p}\cdot\frac{\left(3p-\left(a+b+c\right)\right)^{2}}{3p-\left(a+b+c\right)}=\frac{1}{p}\left(3p-\left(a+b+c\right)\right)=\frac{1}{p}\cdot p=1 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste