Fie \( f: (0, \infty)\to (0, \infty) \) o functie care admite o primitiva \( F: (0, \infty)\to (0, \infty) \) astfel incat \( xf(F(x))\cdot f(x)\geq F(F(x)), \forall x>0 \).
Sa se arate ca, daca exista \( \lim_{x\to\infty} f(F(x))\cdot f(x) \), atunci nu exista \( l\in\mathbb{R} \) astfel incat \( \lim_{x\to\infty}F(F(x))=l \).
Nu exista limita de compunere de primitive
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: nu exista limita de combinatie de primitive
Din inegalitatea din enunt rezulta ca \( [\ln\frac{F(F(x))}{x}]^{\prime}\ge 0. \) Asadar functia \( \ln\frac{F(F(x))}{x} \) este crescatoare, deci exista
\( \lim_{x\to\infty}\ln\frac{F(F(x))}{x}=l\in(0,\infty] \),
asadar \( \lim_{x\to\infty}F(F(x))=\infty \).
\( \lim_{x\to\infty}\ln\frac{F(F(x))}{x}=l\in(0,\infty] \),
asadar \( \lim_{x\to\infty}F(F(x))=\infty \).