Ecuatie

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Ecuatie

Post by Claudiu Mindrila »

Gasiti toate solutiile ecuatiei \( a+b-c-d=p \), unde \( a,b,c,d \) sunt intregi pozitivi astfel incat \( ab=cd \), iar \( p \) este numar prim.

Iurie Boreico, Mathematical Reflections 1/2009
Last edited by Claudiu Mindrila on Fri Feb 06, 2009 7:20 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Rezultatul:

\( \left{\begin{array}{cc}a=q(k-1)\\b=(q+p)k\\c=qk\\d=(q+p)(k-1)\end{array} \)

unde q,k sunt naturale nenule \( k\ge 2 \)

Solutia,putin mai tarziu.

Si inca ceva: in problema originala se stia ca ab=cd :!:
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Am omis asta. Imi cer scuze, voi modifica :) .
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”