Parte intreaga

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Parte intreaga

Post by alex2008 »

Sa se determine \( x,y,z\in \mathbb{N}^* \) astfel incat \( [\frac{x^2}{y+z}]+[\frac{y^2}{z+x}]+[\frac{z^2}{x+y}]=[\frac{2}{x+y+z}] \).
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Deoarece termenul din dreapta este 0, atunci fiecare parte intreaga e 0, de unde \( x^2+1\le y+z \) si analoagele.

Prin adunare \( (x-1)^2+(y-1)^2+(z-1)^2\le 0 \) si de aici \( x=y=z=1 \)
Post Reply

Return to “Clasa a IX-a”