Inegalitate cu o altfel de conditie

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Inegalitate cu o altfel de conditie

Post by Radu Titiu »

Fie \( a,b,c >0 \) a.i. \( (a-b)^2+(b-c)^2+(c-a)^2\leq 2(1-\sqrt[3]{a^2b^2c^2}) \). Demonstrati ca:

\( a^3+b^3+c^3 \leq a+b+c \)
A mathematician is a machine for turning coffee into theorems.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Condititia este echivalenta cu

\( \sum {a^2}+3\sqrt[3]{a^2b^2c^2}\le \sum {ab}+1 \)
iar concluzia cu
\( (a+b+c)(\sum {a^2}-\sum {ab}-1)+3abc\le 0 \)
Asadar
\( LHS\le (a+b+c)(-\sqrt[3]{a^2b^2c^2})+3abc\le 0 \)
ultima fiind echivalenta cu
\( (a+b+c)^3\ge 27 abc \)
Post Reply

Return to “Clasa a IX-a”