Inegalitate integrala 2

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
c.adryan
Euclid
Posts: 19
Joined: Fri Feb 29, 2008 12:22 pm

Inegalitate integrala 2

Post by c.adryan »

Fie \( f:\mathbb{R}\rightarrow\mathbb{R} \) o functie continua cu proprietatea ca \( f^3(x)+f(x)\geq x, \forall x \in \mathbb{R}. \)
Demonstrati ca \( \int_0^2f(x)dx\geq\frac{5}{4} \)

Cristinel Mortici, OJM Constanta 1997
User avatar
st3fan
Arhimede
Posts: 9
Joined: Sun Nov 09, 2008 2:01 pm

Post by st3fan »

Consideri functia \( g(x)=x^3+x \). Atunci din ipoteza \( g(f(x)) \geq x \).
\( g \) este bijectie, deci poti sa iei \( g^{-1} \). In continuare \( f(x)\geq g^{-1}(x) \) si apoi integrezi.
Post Reply

Return to “Analiza matematica”