Fie \( a , b, c \) trei numere reale strict pozitive astfel incat \( a+b+c=1 \). Sa se arate ca
\( \left(1+\frac{1}{a}\right)^{b}\left(1+\frac{1}{b}\right)^{c}\left(1+\frac{1}{c}\right)^{a}\geq 4 \).
P.S. Eu am doua solutii la aceasta problema. Una cu integrale, iar alta la nivel de clasa a IX-a. Alte solutii sunt binevenite.
Inegalitate discret data cu ajutorul integralelor
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Vezi RMT 1/2009.
Indicatie( a XI-a):
Functia \( f(x)=\ln (1+\frac{1}{x}) \) este convexa si aplicam inegalitatea lui Jensen.
Indicatie( a XI-a):
Functia \( f(x)=\ln (1+\frac{1}{x}) \) este convexa si aplicam inegalitatea lui Jensen.
Last edited by Marius Mainea on Wed Mar 04, 2009 10:20 pm, edited 1 time in total.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Solutia 1.
Folosind inegalitatea Cauchy-Buniakovski-Schwarz, vom avea ca
\( (b(x+a)+c(x+c)+a(x+b))\left(\frac{b}{x+a}+\frac{c}{x+b}+\frac{a}{x+b}\right)\geq (a+b+c)^{2}. \)
Astfel, rezulta ca
\( \frac{b}{x+a}+\frac{c}{x+b}+\frac{a}{x+b}\geq\frac{(a+b+c)^{2}}{x+ab+bc+ca} \).
Integrand aceasta inegalitate de la \( 0 \) la \( 1 \) vom avea ca
\( b\int_0^1\frac{1}{x+a}dx+c\int_0^1\frac{1}{x+b}dx+a\int_0^1\frac{1}{x+b}dx\geq\frac{1}{x+ab+bc+ca} \). Folosind mai departe si ca \( ab+bc+ca\leq\frac{1}{3} \), vom avea ca
\( b\ln\left(1+\frac{1}{a}\right)+c\ln\left(1+\frac{1}{b}\right)+a\left(1+\frac{1}{c}\right)\geq 3\int_0^1\frac{1}{3x+1}dx=3\cdot\frac{1}{3}\ln 4. \). Acum, tinand cont de proprietatile logaritmului natural si de faptul ca \( \ln \) este crescatoare, obtinem cerinta problemei in cauza. \( \qed \)
Solutia 2.
Intr-adevar, din inegalitatea mediilor, avem \( 1+\frac{1}{a}=1+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{\frac{1}{27a^3}}=\frac{4}{3^{3/4}a^{3/4}} \). Scriind si inegalitatile analoage si folosind inegalitatea \( a^bb^cc^a\leq ab+bc+ca \) concluzia rezulta imediat.
Folosind inegalitatea Cauchy-Buniakovski-Schwarz, vom avea ca
\( (b(x+a)+c(x+c)+a(x+b))\left(\frac{b}{x+a}+\frac{c}{x+b}+\frac{a}{x+b}\right)\geq (a+b+c)^{2}. \)
Astfel, rezulta ca
\( \frac{b}{x+a}+\frac{c}{x+b}+\frac{a}{x+b}\geq\frac{(a+b+c)^{2}}{x+ab+bc+ca} \).
Integrand aceasta inegalitate de la \( 0 \) la \( 1 \) vom avea ca
\( b\int_0^1\frac{1}{x+a}dx+c\int_0^1\frac{1}{x+b}dx+a\int_0^1\frac{1}{x+b}dx\geq\frac{1}{x+ab+bc+ca} \). Folosind mai departe si ca \( ab+bc+ca\leq\frac{1}{3} \), vom avea ca
\( b\ln\left(1+\frac{1}{a}\right)+c\ln\left(1+\frac{1}{b}\right)+a\left(1+\frac{1}{c}\right)\geq 3\int_0^1\frac{1}{3x+1}dx=3\cdot\frac{1}{3}\ln 4. \). Acum, tinand cont de proprietatile logaritmului natural si de faptul ca \( \ln \) este crescatoare, obtinem cerinta problemei in cauza. \( \qed \)
Solutia 2.
Intr-adevar, din inegalitatea mediilor, avem \( 1+\frac{1}{a}=1+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{\frac{1}{27a^3}}=\frac{4}{3^{3/4}a^{3/4}} \). Scriind si inegalitatile analoage si folosind inegalitatea \( a^bb^cc^a\leq ab+bc+ca \) concluzia rezulta imediat.