Subiectul I OJM 2009

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Subiectul I OJM 2009

Post by DrAGos Calinescu »

Pe laturile \( AB \) si \( AC \) ale triunghiului\( ABC \) se considera punctele \( D \) si \( E \),astfel incat \( \vec{DA}+\vec{DB}+\vec{EA}+\vec{EC}=0 \).
Fie \( T \) intersectia dreptelor \( DC \) si \( BE \). Sa se determine \( \alpha \) real, astfel incat \( \vec{TB}+\vec{TC}=\alpha\vec{TA} \)
User avatar
Al3xx
Euclid
Posts: 35
Joined: Fri Nov 07, 2008 10:39 pm
Location: Slatina

Post by Al3xx »

Se observa ca \( D \) mijloc \( AB \), \( E \) mijloc \( AC \). Construim paralelogramul \( TAPB \), aplicam Leibniz si rezulta \( \vec{TB} + \vec{TC} + \vec{TA} = 0 \) de unde rezulta ca \( \alpha=-1 \).
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Da, \( T \) fiind centrul de greutate al triunghiului este foarte cunoscut faptul ca \( \vec{GA}+\vec{GB}+\vec{GC}=0 \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Subiectul I OJM 2009

Post by Virgil Nicula »

VIRGIL NICULA wrote: O usoara extindere.

Fie \( \triangle\ ABC \) si punctele \( D\in (AB) \) , \( E\in (AC) \) ca \( \vec{DB}+\vec{EC}=p\cdot \left(\vec{DA}+\vec{EA}\right) \) .

Notam \( T\in BE\ \cap\ CD \) . Sa se determine \( \alpha =\alpha (p) \in\mathbb R \) astfel incat \( \vec{TB}+\vec{TC}=\alpha\cdot \vec{TA} \) .
Demonstratie. Alegem originea sistemului de vectori in varful \( A \) , adica \( \vec A=\vec 0 \) si pentru orice \( X \) , \( Y \)

avem \( \vec {AX}=X\ \ ,\ \ \vec {XY}=Y-X \) . Deci exista \( \{m,n\}\subset (0,1) \) ca \( \overline{\underline{\left\|\ D=mB\ \ \wedge\ \ E=nC\ \right\|}} \) .

\( \odot\ \ \vec{DB}+\vec{EC}=p\cdot \left(\vec{DA}+\vec{EA}\right) \) \( \Longleftrightarrow \) \( (B+C)-(D+E)=-p(D+E) \) \( \Longleftrightarrow \)

\( (1-p)(D+E)=B+C \) \( \Longleftrightarrow \) \( (1-p)(mB+nC)=B+C \) \( \Longleftrightarrow \) \( \overline{\underline{\left\|\ m=n=\frac {1}{1-p}\ \right\|}}\ \ (\ DE\ \parallel\ BC\ ) \) .

\( \odot\ \ T\in BE\ \cap\ CD \) \( \Longleftrightarrow \) exista \( u \) , \( v \) reale ca \( T=uD+(1-u)C=vE+(1-v)B \) \( \Longleftrightarrow \)

\( T=muB+(1-u)C=(1-v)B+nvC \) \( \Longleftrightarrow \) \( \left\{\begin{array}{c}
mu=1-v\\\\
nv=1-u\end{array} \)
\( \Longleftrightarrow \) \( \left\{\begin{array}{c}
mu+v=1\\\\
u+nv=1\end{array} \)
\( \Longleftrightarrow \) \( \left\{\begin{array}{c} u=\frac {n-1}{mn-1}\\\\
v=\frac {m-1}{mn-1}\end{array} \)


si in acest caz \( \underline{\overline{\left\|\ T=\frac {m(n-1)}{mn-1}\cdot B+\frac {n(m-1)}{mn-1}\cdot C\ \right\|}} \) ( prelucrare in general, fara a tine seama de relatia din ipoteza !).

\( \odot\ \ \)Deoarece \( m=n=\frac {1}{1-p} \) rezulta ca \( \underline{\overline{\left\|\ T=\frac {1}{2-p}\cdot (B+C)\ \right\|}} \) . Asadar, \( \vec{TB}+\vec{TC}=\alpha \cdot \vec {TA} \) \( \Longleftrightarrow \)

\( B+C-2T=-\alpha\cdot T \) \( \Longleftrightarrow \) \( B+C=(2-\alpha )\cdot T \) \( \Longleftrightarrow \) \( (B+C)=\frac {2-\alpha}{2-p}\cdot (B+C) \) \( \Longleftrightarrow \) \( \underline{\overline{\left\|\ \alpha =p\ \right\|}} \) .
Post Reply

Return to “Clasa a IX-a”