O limita pentru siruri de forma x_{n+1}=f(x_n)

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

O limita pentru siruri de forma x_{n+1}=f(x_n)

Post by Radu Titiu »

Fie \( D \subset \mathbb{R}_{+} \) avand pe \( 0 \) ca punct de acumulare si \( f: D \to \mathbb{R} \) si sirul \( (x_n)_{n\geq 1} \), \( x_n \in D -\{0\} \), \( x_1 >0 \), definit prin \( x_{n+1}=f(x_n) \), \( \forall n \geq 1 \), iar \( \lim_{n\to \infty } x_n =0 \).

Daca pentru \( t>0 \) exista limitele

\( \lim_{x \searrow 0} \frac{x-f(x)}{x^{1+\frac{1}{t}}}=l >0 \) si

\( \lim_{n\to \infty} (n^tx_n)=L >0 \),

atunci \( L=\left( \frac{t}{l}\right)^t \).

Mi-am adus aminte de aceasta generalizare vazand pb 8 de aici. Daca mi-aduc bine aminte e dintr-o gazeta, dar nu mai tin minte exact.
A mathematician is a machine for turning coffee into theorems.
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Simleu Silvaniei, jud Salaj
Contact:

Post by turcas »

Solutie:

\( L= \lim_{n \to \infty}{n^t \cdot x_n} = \lim_{n \to \infty}{\frac{x_n}{n^{-t}}}. \)

Din lema lui Cesaro-Stolz, pentru cazul de nedeterminare \( \frac{0}{0} \) avem:

\( L= \lim_{n \to \infty}{\frac{x_{n+1}-x_n}{(n+1)^{-t}-n^{-t}}\stackrel{(*)}{=}\lim_{n \to \infty} \frac{f(x_n)-x_n}{(n+1)^{-t}-n^{-t} } \Longrightarrow \)

Am notat cu \( (*)= \left\{ \begin{array} \text{Din ipoteza }, \lim_{x \searrow 0} \frac{x-f(x)}{x^{1+\frac{1}{t}}}= l \Rightarrow \\
\text{exista } \lim_{n \to \infty}{ \frac{x_n-f(x_n)}{x_n^{1+ \frac{1}{t}}} =l\end{array} \right. \)


\( \Rightarrow L= \lim_{n \to \infty} \frac{x_n-f(x_n)}{n^{-t}-(n+1)^{-t}
}= \lim_{n \to \infty} \frac{x_n-f(x_n)}{x_n^{1+ \frac{1}{t}}} \cdot \frac{x_n^{1+\frac{1}{t}} }{n^{-t}-(n+1)^{-t} }= l \cdot \lim_{n \to \infty}{\frac{ x_n^{1+ \frac{1}{t}} \cdot n^{ \left(1+ \frac{1}{t} \right) \cdot t} }{ n^{\left( 1+ \frac{1}{t} \right) \cdot t} \cdot \left( n^{-t}-(n+1)^{-t} \right) } \)
.

Deci \( L= l \cdot \lim_{n \to \infty}{\frac{ \left(x_n \cdot n^t \right)}{n \left[ 1- \left(\frac{n}{n+1} \right)^t \right] }}=\frac{l \cdot L^{1+\frac{1}{t}}}{\lim_{n \to \infty}n \cdot \left[1- \left( \frac{n}{n+1} \right)^t \right] } . (**) \)

Dar acum:
\( \lim_{x \to \infty}x \left[1-\left(\frac{x}{x+1} \right)^t \right]= \lim_{x \to \infty} \frac{1- \left(\frac{x}{x+1} \right)^t}{\frac{1}{x}}\stackrel{L\prime H}{=} \lim_{x \to \infty} \frac{-t \cdot \left( \frac{x}{x+1} \right)^{t-1} \cdot \frac{1}{(x+1)^2}}{ - \frac{1}{x^2}}= \lim_{x \to \infty} t \left( \frac{x}{x+1} \right)^{t-1} \cdot \frac{x^2}{(x+1)^2}=t. \)

Atunci inlocuind in relatia \( (**) \) avem \( L= \frac{l\cdot L^{1+\frac{1}{t}}}{t} \Rightarrow 1=\frac{l \cdot L^{\frac{1}{t}} }{t } \Rightarrow \left|L= \left( \frac{t}{l} \right)^t\right|. \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Vezi generalizarea de mai jos ca exercitiul \( \mathrm {19.1} \) , pagina \( \mathrm{443} \) (cu solutia in detaliu la pagina \( \mathrm{491} \) ) din

cartea Analiza Matematica pentru clasa a XI - a (teorie, exercitii si probleme) din Editura TEORA, 1999.

Virgil Nicula wrote:Se considera functia continua \( f\ :\ (0,b)\ \rightarrow\ (0,1) \) pentru care \( \lim_{x\to 0}\ f(x)=1 \) si exista \( r\ >\ 0 \) ca

\( \lim_{x\to 0}\ \frac {1-f(x)}{x^r}=l\ >\ 0\ . \) Fie sirul \( x_1\in (0,b)\ ,\ x_{n+1}=x_n\cdot f\left(x_n\right)\ ,\ n\in\mathbb N\ . \) Atunci \( \left\|\ \begin{array}{c}
x_n\ \rightarrow 0\\\\\\\
nx_n^r\ \rightarrow\ \frac {1}{rl}\end{array}\ \right\|\ . \)


(vezi nota matematica "O clasa de siruri recurente" de Virgil Nicula in G.M.B., nr. 6/1994, pag. 241).
Aplicatie. \( x_1\in\left(0,\frac {1}{p}\right)\ \ \wedge\ \ x_{n+1}=x_n\prod_{k=1}^p\left(1-kx_n\right)^p\ ,\ \{p,n}\subset\mathbb N^* \) \( \Longrightarrow \) \( \lim_{n\to\infty}\ nx_n=\frac {2}{p^2(p+1)}\ . \)
Last edited by Virgil Nicula on Fri Mar 13, 2009 2:34 pm, edited 1 time in total.
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Virgil Nicula wrote:Se considera functia continua \( f\ :\ (0,b)\ \rightarrow\ (0,1) \) pentru care \( \lim_{x\to 0}\ f(x)=1 \) si exista \( r\ >\ 0 \) ca

\( \lim_{x\to 0}\ \frac {1-f(x)}{x^r}=l\ >\ 0\ . \) Fie sirul \( x_1\in (0,b)\ ,\ x_{n+1}=f\left(x_n\right)\ ,\ n\in\mathbb N\ . \) Atunci \( \left\|\ \begin{array}{c}
x_n\ \rightarrow 0\\\\\\\
nx_n^r\ \rightarrow\ \frac {1}{rl}\end{array}\ \right\|\ . \)


(vezi nota matematica "O clasa de siruri recurente" de Virgil Nicula in G.M.B., nr. 6/1994, pag. 241).
Există un "typo": \( x_{n+1}=x_n f(x_n) \).
De notat că rezultatul este cunoscut de peste 80 de ani; apare în cartea de probleme Pólya & Szegő din 1924 (!).
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Multumesc. Greseala din neatentie, imi pare rau. Informatia cealalta exprima ca in ceea ce ma priveste, trebuie sa recunosc ca nimic nu-i nou sub soare ...
Post Reply

Return to “Analiza matematica”