Numere compuse

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Numere compuse

Post by Marius Mainea »

Aratati ca pentru orice n natural , numarul \( a=5^{5^{n+1}}+5^{5^n}+1 \) nu poate fi prim.

Concursul ,,Gh.Lazar'',2005
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Indicatie: Noteaza

\( a=5^{5^n} \)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Cu notatia de mai sus, avem:

\( a^{5}+a+1=a^{5}+a^{2}+a+1-a^{2}=a^{2}\left(a^{3}-1\right)+\left(a^{2}+a+1\right)=a^{2}\left(a-1\right)\left(a^{2}+a+1\right)+\left(a^{2}+a+1\right)=\left(a^{2}+a+1\right)\left(a^{3}-a^{2}+1\right) \) si cum \( a^{2}+a+1>1 \) si \( a^{3}-a^{2}+1>1 \) rezulta cerinta problemei.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”