Problema cu numere complexe si o multime finita
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Problema cu numere complexe si o multime finita
Se considera \( a,b \in \mathbb{C}^* \), \( a\neq b \) si multimea \( A=\{|a^n-b^n|,\ n\in \mathbb{N}^*\} \). Daca \( A \) e finita, atunci \( |a|=|b|=1 \) si \( 0 \in A \).
A mathematician is a machine for turning coffee into theorems.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Notand \( a=r_1(\cos t_1+i\sin t_1) \) si \( b=r_2(\cos t_2+i\sin t_2) \) si folosind conditia din enunt se obtine ca
\( r_1^{2n}+r_2^{2n}-2(r_1r_2)^n\cos [n(t_1-t_2)]= \) constant, pentru o infinitate de n, naturale.
De aici rezulta ca \( r_1=r_2=1 \) si \( \cos [n(t_1-t_2)]= \) constant, pentru o infinitate de n si de aici \( t_1-t_2=\frac{p}{q}\pi \) cu p intreg, q natural.
Asadar \( a^{2q}=b^{2q} \) de unde \( 0\in A \).
\( r_1^{2n}+r_2^{2n}-2(r_1r_2)^n\cos [n(t_1-t_2)]= \) constant, pentru o infinitate de n, naturale.
De aici rezulta ca \( r_1=r_2=1 \) si \( \cos [n(t_1-t_2)]= \) constant, pentru o infinitate de n si de aici \( t_1-t_2=\frac{p}{q}\pi \) cu p intreg, q natural.
Asadar \( a^{2q}=b^{2q} \) de unde \( 0\in A \).