Problema 1:
a) Fie \( x,y,z\in\mathbb{R} \), astfel incat: xy+yz+xz=1.
Demonstrati ca: \( \frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}=\frac{2}{(x+y)(y+z)(z+x)} \)
b) Folosind eventual rezultatul de la a), demonstrati ca daca a, b, c sunt numere reale pozitive astfel incat: \( a+b+c=abc \),
atunci: \( \frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le \frac{abc}{4} \). (Maria Mihet).
Problema 2:
a) Determinati toate functiile \( f:\mathbb{R}\rightarrow\mathbb{R} \) pentru care:
\( 3f(x)f(y)-5f(x)+7f(y)+4=xy \), oricare ar fi \( x,y\in\mathbb{R} \). (Vasile Berinde)
b) Fie \( f:\mathbb{R}\rightarrow\mathbb{R}, f(x)=\left\{\begin{array}{ccc} x=4,\ x<2m \\
3x-2, \ x\ge 2m \end{array} ; m\in\mathbb{R}. \)
Sa se afle valorile lui \( m\in\mathbb{R} \) pentru care:
\( f(2m-1)+f(m^2+m+1)+f(2m+2)=mf(2m-2) \). (Vasile Serdean si Cristian Pop)
Problema 3:
Fie semidreptele necoplanare (OA, (OB, (OC, astfel incat sa avem: \( m(\angle{AOB})=m(\angle{BOC})=m(\angle{COA})=60^0 \).
Stiind ca AO=6 cm, calculati lungimea segmentului (AO'), unde O' este proiectia punctului A pe planul (OBC).
(Magda Visovan, Supliment GM/ianuarie 2009)
Problema 4:
Fie ABCDA'B'C'D' un cub. Cubul este patat cu Cola pe mai putin de jumatate din suprafata totala.
Aratati ca exista doua puncte de pe suprafata cubului, care sunt coliniare cu centrul cubului, care nu sunt patate cu Cola.
(Concurs "Recreatii matematice")
Concursul Interjudetean "MOISIL", Satu-Mare, 2009
Moderators: Bogdan Posa, Laurian Filip
-
mihai miculita
- Pitagora
- Posts: 93
- Joined: Mon Nov 12, 2007 7:51 pm
- Location: Oradea, Romania
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Re: Concursul Interjudetean "MOISIL", Satu_mare, 2
Solutie.mihai miculita wrote:Problema 1:
a). Fie \( x,y,z\in\mathbb{R} \), astfel incat: xy+yz+xz=1.
Demonstrati ca: \( \frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}=\frac{2}{(x+y)(y+z)(z+x)} \)
b). Folosind eventual rezultatul de la a), demonstrati ca daca a, b, c sunt numere reale pozitive astfel incat: \( a+b+c=abc \),
atunci: \( \frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le \frac{abc}{4} \). (Maria Mihet).
a) Avem \( \sum\frac{x}{x^{2}+1}=\sum\frac{x}{x^{2}+xy+yz+zx}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}=\sum\frac{x\left(y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\sum xy}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)} \)
b) Avem ca \( \sum\frac{a}{a^{2}+1}=\sum\frac{a}{a^{2}+\frac{abc}{a+b+c}}=\sum\frac{a+b+c}{a\left(a+b+c\right)+bc}=\left(a+b+c\right)\sum\frac{1}{\left(a+b\right)\left(a+c\right)}=\left(a+b+c\right)\sum\frac{b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)} \).
Dar \( \left(a+b+c\right)\sum\frac{b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2\left(a+b+c\right)^{2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)^{2}}{2^{3}\sqrt{ab}\cdot\sqrt{bc}\cdot\sqrt{ca}}=\frac{2\left(a+b+c\right)^{2}}{8abc}=\frac{2a^{2}b^{2}c^{2}}{8abc}=\frac{abc}{4} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)