Fie functiile \( f,g,h : \mathbb{R} \to \mathbb{R} \), unde f este derivabila, g si h sunt monotone, iar \( f^{\prime}=f+g+h. \)
Demonstrati ca multimea punctelor de discontinuitate ale functiei g coincide cu multimea punctelor de discontinuitate ale functiei h.
ONM problema 4
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Deoarece \( g,h \) sunt monotone, au cel mult discontinuitati de speta I. Daca \( g \) ar avea o discontinuitate unde \( h \) e continua, aceasta ar fi discontinuitate de speta I pentru \( f+g+h \) care are proprietatea Darboux (si nu poate avea astfel de discontinuitati), fiind derivata unei functii. Contradictie. Analog se arata ca nici \( h \) nu poate avea o discontinuitate in care \( g \) este continua. Astfel multimea discontinuitatilor lui \( h \) coincide cu cea a discontinuitatilor lui \( g \).
P.S. A fost la nationala asta?
P.S. A fost la nationala asta?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
De ce 6 puncte?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Ma rog, eu m-am dus pe urmatoarea idee:
\( f^{\prime} - f \) este derivata unei functii continue deci are Darboux. Apoi, in cealalta parte, au derivate laterale finite, etc... Mi s-a zis ca eu nu pot folosi in a XI-a faptul ca \( f \) continua implica \( f \) admite primitiva. Au zis ca imi dau 7 puncte daca demonstrez asta. E ok, oricum sunt multumit
\( f^{\prime} - f \) este derivata unei functii continue deci are Darboux. Apoi, in cealalta parte, au derivate laterale finite, etc... Mi s-a zis ca eu nu pot folosi in a XI-a faptul ca \( f \) continua implica \( f \) admite primitiva. Au zis ca imi dau 7 puncte daca demonstrez asta. E ok, oricum sunt multumit
Last edited by turcas on Sat Apr 18, 2009 11:40 am, edited 1 time in total.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Nu imi vine sa cred... Altii folosesc la baraje chestii care nici nu se fac in liceu si iau punctaje maxime.... Nu e corect.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog