Ecuatie in numere intregi

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Aelius Pop
Euclid
Posts: 22
Joined: Sat Nov 08, 2008 3:22 pm
Location: Arad

Ecuatie in numere intregi

Post by Aelius Pop »

Determinati numerele naturale \( x \) si \( y \) care satisfac ecuatia.

\( y^2 \) + \( (x+1)^2 \)=\( x^2 \)+\( (y+1)^2 \)=\( k^2 \)
\( k\in\mathbb{N} \)
Last edited by Aelius Pop on Wed Apr 15, 2009 9:51 pm, edited 1 time in total.
User avatar
salazar
Pitagora
Posts: 91
Joined: Mon Apr 06, 2009 7:36 am
Location: Alba Iulia

Post by salazar »

Folosim forumula:
\( (a+b)^2=a^2+2ab+b^2 \) si obtinem:
\( y^2+x^2+2x+1=x^2+y^2+2y+1=k \),
\( 2x=2y=k \)
\( x=y=k \), oricare ar fi \( x,y,k\in N \).
Aelius Pop
Euclid
Posts: 22
Joined: Sat Nov 08, 2008 3:22 pm
Location: Arad

Post by Aelius Pop »

Imi cer scuze pt eroarea comisa. Am editat enuntul. Acum e \( k^2 \) in loc de \( k \).
Copiii se nasc cu aripi, profesorii ii invata sa zboare.
Post Reply

Return to “Clasa a VI-a”