Un sistem de ecuatii interesant (propriu).

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Un sistem de ecuatii interesant (propriu).

Post by Virgil Nicula »

Pentru \( n\in\mathbb{N}^* \) dat sa se determine \( \{x,y,z\}\subset[0,1] \) astfel incat

\( x^n+(1-y)^n=y^n+(1-z)^n=z^n+(1-x)^n=\frac {1}{2^{n-1}} \) .
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Sistemul se reduce la rezolvarea ecuatiei

\( f(x)=\frac{1}{2^{n-1}} \) unde \( f(x)=x^n+(1-x)^n \)

De aici se obtine \( x=\frac{1}{2} \) si la fel \( y=z=\frac{1}{2} \)

Pentru mai multe detalii aici.
Post Reply

Return to “Clasa a IX-a”