Page 1 of 1
Ecuatie in numere naturale
Posted: Fri Apr 17, 2009 12:00 am
by Andi Brojbeanu
Sa se arate ca pentru orice n\( \geq \)3, ecuatia \( \frac{1}{x_{1} \)+\( \frac{1}{x_{2} \)+.......+\( \frac{1}{x_{n} \)=1 are solutii numere naturale distincte.
Re: Ecuatie in numere naturale
Posted: Fri Apr 17, 2009 8:51 am
by Antonache Emanuel
Luam \( \frac{1}{x_{1} \)+\( \frac{1}{x_{2} \)+.......+\( \frac{1}{x_{n} \)=1 cu \( {x_{1}<{x_{2}<...<{x_{n} \). Observam pentru inceput, pentru n=3, ca \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1 \), atunci \( \frac{1}{2}+\frac{1}{2}(\frac{1}{2}+\frac{1}{3}+\frac{1}{6})=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=1 \) (deoarece \( \frac{1}{2}+\frac{1}{2}=1) \), iar apoi \( \frac{1}{2}+\frac{1}{2}(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12})=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{12}+\frac{1}{24}=1 \) si continuam asa pana la infinit, observand ca numarul termenilor creste cu o unitate la fiecare transformare, deci afirmatia este adevarata.