Ecuatie in numere naturale
Moderators: Bogdan Posa, Laurian Filip
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
Ecuatie in numere naturale
Sa se arate ca pentru orice n\( \geq \)3, ecuatia \( \frac{1}{x_{1} \)+\( \frac{1}{x_{2} \)+.......+\( \frac{1}{x_{n} \)=1 are solutii numere naturale distincte.
-
Antonache Emanuel
- Euclid
- Posts: 37
- Joined: Sat Feb 28, 2009 4:15 pm
- Location: Targoviste, Dambovita
Re: Ecuatie in numere naturale
Luam \( \frac{1}{x_{1} \)+\( \frac{1}{x_{2} \)+.......+\( \frac{1}{x_{n} \)=1 cu \( {x_{1}<{x_{2}<...<{x_{n} \). Observam pentru inceput, pentru n=3, ca \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1 \), atunci \( \frac{1}{2}+\frac{1}{2}(\frac{1}{2}+\frac{1}{3}+\frac{1}{6})=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=1 \) (deoarece \( \frac{1}{2}+\frac{1}{2}=1) \), iar apoi \( \frac{1}{2}+\frac{1}{2}(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12})=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{12}+\frac{1}{24}=1 \) si continuam asa pana la infinit, observand ca numarul termenilor creste cu o unitate la fiecare transformare, deci afirmatia este adevarata.