Problema 1, lista scurta 2009

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Problema 1, lista scurta 2009

Post by alex2008 »

Fie numerele naturale nenule \( a_1,a_2,...,a_{n+1} \) si \( k \) astfel incat :

\( a_1\le a_2\le ...\le a_{n+1}. \)

Demonstrati inegalitatea :

\( \left\lfloor \frac{a_2-a_1}{k}\right\rfloor+\left\lfloor \frac{a_3-a_2}{k}\right\rfloor+...+\left\lfloor \frac{a_{n+1}-a_{n}}{k}\right\rfloor+n-1\ge \left\lfloor \frac{a_{n+1}-a_1}{k}\right\rfloor \)

Manea Cosmin si Petrica Dragos, Pitesti
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosim inegalitatea:
\( [x_1+x_2+...+x_n]\le [x_1]+[x_2]+...+[x_n]+n-1 \)
Post Reply

Return to “Clasa a IX-a”