Problema 2, lista scurta 2009

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Problema 2, lista scurta 2009

Post by alex2008 »

Demonstrati ca pentru orice numar real \( x>0 \) si orice intreg \( n\in \mathbb{N}^* \) are loc inegalitatea :

\( \sum_{k=1}^n\frac{\sqrt{2k-1}}{x+k^2}<\sqrt{\frac{n}{x}}. \)

Dan Nedeianu, Drobeta Turnu Severin
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Aplicam C-B-S :

\( LHS\le\sqrt{n\sum {\frac{2k-1}{(x+k^2)^2}}}\le\sqrt{n\sum {(\frac{1}{x+(k-1)^2}-\frac{1}{x+k^2})}}=\sqrt{n(\frac{1}{x}-\frac{1}{x+n^2})}<RHS \)
Post Reply

Return to “Clasa a IX-a”