Rezolvati in multimea numerelor intregi ecuatia:
\( x^3+y^3-3xy-3=0 \).
Concursul "Ion Ciolac" problema 1
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Notam \( x+y=s \), \( xy=p \). Astfel, ecuatia din enunt devine:
\( s(s^2-3p)=3p+3\ \Longleftrightarrow\ s^3-3ps-3p-3=0\ \Longleftrightarrow\ s^3+1-3p(s+1)=4 \)
\( \Longleftrightarrow (s+1)(s^2-s+1)-3p(s+1)=4\ \Longleftrightarrow\ (s+1)(s^2-s+1-3p)=4 \)
Ecuatia fiind in numere intregi il scriem pe 4 ca toate produsele de numere intregi si se calculeaza solutiile in fiecare caz.
\( s(s^2-3p)=3p+3\ \Longleftrightarrow\ s^3-3ps-3p-3=0\ \Longleftrightarrow\ s^3+1-3p(s+1)=4 \)
\( \Longleftrightarrow (s+1)(s^2-s+1)-3p(s+1)=4\ \Longleftrightarrow\ (s+1)(s^2-s+1-3p)=4 \)
Ecuatia fiind in numere intregi il scriem pe 4 ca toate produsele de numere intregi si se calculeaza solutiile in fiecare caz.
Last edited by Mateescu Constantin on Sat Dec 26, 2009 3:10 pm, edited 2 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)