Problema by Marcel Tena

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Problema by Marcel Tena

Post by BogdanCNFB »

Consideram afirmatiile:
(S) Pentru orice numar \( n\in\mathbb{N},n\ge 117 \), in intervalul \( ( n,n+sqrt{n} ) \) exista cel putin un numar prim.
(A) Pentru orice \( p \) prim, \( p\neq 13 \), in intervalul \( ( p,p^2 ) \) nu exista doua numere prime consecutive \( q \) si \( r \) astfel incat \( r-q=p+1 \).
Sa se demonstreze implicatia \( (S)\Rightarrow(A) \).
Post Reply

Return to “Clasa a X-a”