Fie \( f:[-1, 1]\to\mathbb{R} \) o functie continua astfel incat sa avem \( \int_{-1}^{1}x^2f(x)dx=0. \)
Sa se arate ca \( \int_{-1}^{1}f^{2}(x)dx\geq\frac{9}{8}\left(\int_{-1}^{1}f(x)dx\right)^{2}. \)
Cezar Lupu & Tudorel Lupu
O alta inegalitate integrala destul de interesanta
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Se foloseste problema propusa de aceiasi autori:
Daca \( f,g:[a,b]\rightarrow\mathbb{R} \)sunt doua functii continue cu proprietatea ca \( \int_a^bf(x)g(x)=0, \) atunci \( \(\int_a^bf^2(x)dx\)\(\int_a^bg^2(x)dx\)\ge \frac{4}{(b-a)^2}\(\int_a^bf(x)dx\)^2\(\int_a^bg(x)dx\)^2 \)
Daca \( f,g:[a,b]\rightarrow\mathbb{R} \)sunt doua functii continue cu proprietatea ca \( \int_a^bf(x)g(x)=0, \) atunci \( \(\int_a^bf^2(x)dx\)\(\int_a^bg^2(x)dx\)\ge \frac{4}{(b-a)^2}\(\int_a^bf(x)dx\)^2\(\int_a^bg(x)dx\)^2 \)
Last edited by Marius Mainea on Wed May 06, 2009 9:10 pm, edited 1 time in total.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Asta era o parte din problema pe care am trimis-o la AMM acum 2 ani si care a si aparut de altfel, insa redactorul sef, Doug Hensley mi-a spus ca e mai estetica cu \( a=0 \) si \( b=1 \).
Last edited by Cezar Lupu on Thu May 07, 2009 9:23 pm, edited 1 time in total.
Inegalitatea iniţială nu rezultă de aiciMarius Mainea wrote:Se foloseste problema propusa de aceiasi autori:
Daca \( f,g:[a,b]\rightarrow\mathbb{R} \)sunt doua functii continue cu proprietatea ca \( \int_a^bf(x)g(x)=0, \) atunci \( \(\int_a^bf^2(x)dx\)\(\int_a^bg^2(x)dx\)\ge \frac{4}{(b-a)^2}\(\int_a^bf(x)dx\)^2\(\int_a^bg(x)dx\)^2 \)
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Pentru problema initiala :
Din inegalitatea Cauchy avem:
\( \int_{-1}^1 (ax^2+b)^2 dx \cdot \int_{-1}^1 f^2(x) dx \geq \left( \int_{-1}^1 (ax^2+b) f(x)dx\right)^2=b^2\left( \int_{-1}^1 f(x)dx\right)^2 \)
Cautam a si b a.i. sa obtinem constantele din inegalitate si se pot alege:
\( a=5 \) si \( b=-3 \) .
Din inegalitatea Cauchy avem:
\( \int_{-1}^1 (ax^2+b)^2 dx \cdot \int_{-1}^1 f^2(x) dx \geq \left( \int_{-1}^1 (ax^2+b) f(x)dx\right)^2=b^2\left( \int_{-1}^1 f(x)dx\right)^2 \)
Cautam a si b a.i. sa obtinem constantele din inegalitate si se pot alege:
\( a=5 \) si \( b=-3 \) .
A mathematician is a machine for turning coffee into theorems.