In legatura cu o problema de la ONM 1996
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
In legatura cu o problema de la ONM 1996
Fie A, B doua matrice de ordinul 2 cu elementele reale astfel incat \( \det(AB-BA)=\det(AB+BA) \). Aratati ca \( \det(A^2+B^2)\geq0 \)
Last edited by opincariumihai on Sat May 23, 2009 5:57 pm, edited 4 times in total.
-
Bogdan Cebere
- Thales
- Posts: 145
- Joined: Sun Nov 04, 2007 1:04 pm
Banuiesc ca este in legatura cu problema propusa de Cristinel Mortici la ONM 1996:
Fie \( A,B \in M_2 (R) \) doua matrice a.i. \( \det(AB+BA) \leq 0 \). Demonstrati ca avem inegalitatea \( \det(A^2+B^2) \geq 0 \).
Aici, ca si acolo, pornim de la relatia \( \det(X+Y)+ \det(X-Y)=2( \det X+ \det Y) \) si folosim polinomul \( f(X+tY)=(\det Y) t^2 +at+ \det X \).
Fie \( A,B \in M_2 (R) \) doua matrice a.i. \( \det(AB+BA) \leq 0 \). Demonstrati ca avem inegalitatea \( \det(A^2+B^2) \geq 0 \).
Aici, ca si acolo, pornim de la relatia \( \det(X+Y)+ \det(X-Y)=2( \det X+ \det Y) \) si folosim polinomul \( f(X+tY)=(\det Y) t^2 +at+ \det X \).
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Acum mai ramane de studiat cazul det(AB+BA)>0 care este echivalent, folosind ipoteza, cu det(AB-BA)>0. Incercati http://www.mateforum.ro/viewtopic.php?t=297.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)