Se considera numerele reale strict pozitive \( x,\ y,\ z \) cu \( x^{4}+y^{4}+z^{4}=3 \). Sa se arate ca: \( \frac{x+y}{\left(x^{2}\sqrt{y}+y^{2}\sqrt{x}\right)^{2}}+\frac{y+z}{\left(y^{2}\sqrt{z}+z^{2}\sqrt{x}\right)^{2}}+\frac{z+x}{\left(z^{2}\sqrt{x}+x^{2}\sqrt{z}\right)^{2}}\ge\frac{3}{2} \).
Catalin Cristea, G.M. 2/2009
Inegalitate conditionata, G.M. 2/2009
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate conditionata, G.M. 2/2009
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova