Ideale in inel de functii continue

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Ideale in inel de functii continue

Post by Beniamin Bogosel »

Determinati idealele maximale ale inelului \( \mathcal{C}([0,1]) \) al functiilor continue definite pe \( [0,1] \) cu valori reale, inzestrat cu operatiile obisnuite de adunare si inmultire.

Admitere SNSB 2009
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Idealele maximale sunt de forma \( I_\lambda=\{f \in \mathcal{C}([0,1]) : f(\lambda )=0 \} \). Evident, acestea sunt ideale. In continuare vom considera toate functiile cu care lucram ca fiind parte din inelul dat.

Pentru a demonstra ca \( I_\lambda \) este maximal, presupunem ca exista un alt ideal \( I\supset I_\lambda \) care contine o functie \( g \) continua pe [0,1] care nu se anuleaza in \( \lambda \); o presupunem pozitiva pe o vecinatate \( V \) a lui \( \lambda \). Deoarece \( g \) este marginita putem sa alegem o functie \( h \in I_\lambda \) astfel incat \( g+h>0 \) care este astfel inversabila. \( g+h \in I \) prin urmare \( I \) este chiar inelul functiilor continue, contradictie cu presupunerea de ideal maximal.
Last edited by Beniamin Bogosel on Wed May 27, 2009 9:40 pm, edited 2 times in total.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Post by Dragos Fratila »

Atunci \( g=(f+M)\cdot h -M=h \cdot f + M \cdot (h-1) \), unde \( h=\frac{g+M}{f+M} \) apartine inelului. Astfel \( h-1=0 \) pe \( E \), prin urmare daca \( f \in I \) atunci si \( g \in I \) si reciproc.
Cum rezulta ca \( g \) e in ideal?

Cred ca e relevant:
http://www.mathlinks.ro/viewtopic.php?s ... 7&t=225223
"Greu la deal cu boii mici..."
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Nu e bine...
imi pare rau. o sa corectez.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza reala”