Fie \( \alpha \in R-Q \), \( a_n = \left\{ {\begin{array}
0,\ [n\alpha ] = [(n - 1)\alpha ] \\
1,\ [n\alpha ] \ne [(n - 1)\alpha ] \\
\end{array}} \right. \)
Demonstrati ca \( {\lim }\limits_{n \to \infty } \frac{{a_1 + a_2 + ... + a_n }}{n} = \alpha. \)
Limita de sir cu parte intreaga
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
Limita de sir cu parte intreaga
La inceput a fost numarul. El este stapanul universului.
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
Pt. orice \( \alpha \) putem lua doua siruri de numere rationale \( (x_k),(y_k);x_k<\alpha<y_k;\lim_{k\to\infty} x_k=\lim_{k\to\infty} y_k=\alpha \).
Evident sirurile \( (a_n) \) corespunzatoare sirurilor \( (x_k), (y_k) \) sunt periodice deoarece \( x_k, y_k \) sunt rationale pt orice k.
Cum \( [nx_k]\le [n\alpha] \le [ny_k],\forall k \), notand \( b_n=\frac{a_1+a_2+...+a_n}{n} \), rezulta ca \( b_n_{x_k} \le b_n_{\alpha} \le b_n_{y_k} \) pt. orice n. Trecand la limita pt k, n tind la infinit rezulta concluzia.
Evident sirurile \( (a_n) \) corespunzatoare sirurilor \( (x_k), (y_k) \) sunt periodice deoarece \( x_k, y_k \) sunt rationale pt orice k.
Cum \( [nx_k]\le [n\alpha] \le [ny_k],\forall k \), notand \( b_n=\frac{a_1+a_2+...+a_n}{n} \), rezulta ca \( b_n_{x_k} \le b_n_{\alpha} \le b_n_{y_k} \) pt. orice n. Trecand la limita pt k, n tind la infinit rezulta concluzia.
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti