Inegalitate in triunghi
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Inegalitate in triunghi
Aratati ca in orice triunghi avem \( OH \geq R|\sin(B-C)| \). Cand are loc egalitatea ?
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Iata alta : \( \underline{\overline {\left\|\ \begin{array}{c}
A=60^{\circ}\ \Longleftrightarrow\ OI=2R\cdot\sin\frac {|B-C|}{4}\\\\\\\\
OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}{4}}\\\\\\\\
OI\ \ge\ 2R\cdot \sin\frac {|B-C|}{4}\sqrt {2\sin\frac A2}\end{array}\ \right\|}} \)
A=60^{\circ}\ \Longleftrightarrow\ OI=2R\cdot\sin\frac {|B-C|}{4}\\\\\\\\
OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}{4}}\\\\\\\\
OI\ \ge\ 2R\cdot \sin\frac {|B-C|}{4}\sqrt {2\sin\frac A2}\end{array}\ \right\|}} \)
Last edited by Virgil Nicula on Mon Jul 13, 2009 11:08 pm, edited 1 time in total.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
In identitatea \( \overline{\underline{\left\|\ \cos A+\cos B+\cos C=1+\frac rR\ \right\|}} \) particularizam cu \( A=60^{\circ} \) si obtinem :Virgil Nicula wrote:\( A=60^{\circ}\ \Longleftrightarrow\ OI=2R\cdot\sin\frac {|B-C|}{4} \)
\( \cos B+\cos C=\frac 12+\frac rR\ \Longleftrightarrow\ 2\cos\frac{B+C}{2}\cdot\cos\frac{B-C}{2}=\frac 12+\frac rR\ \Longleftrightarrow\ \cos\frac{B-C}{2}=\frac 12+\frac rR \)
\( \Longleftrightarrow\ 1-\cos\frac{B-C}{2}=\frac 12-\frac rR\ \Longleftrightarrow\ 2sin^2\frac{B-C}{4}=\frac{R-2r}{2R}\ \Longleftrightarrow\ 4R\sin^2\frac{B-C}{4}=R-2r \)
\( \Longleftrightarrow\ 4R^2\sin^2\frac{B-C}{4}=R^2-2Rr=OI^2\ \Longleftrightarrow\ \underline{\overline{\left\|\ OI=2R\cdot\sin\frac{|B-C|}{4}\ \right\|}} \)
Deoarece \( \cos A=1-2\sin^2\frac A2 \)Virgil Nicula wrote:\( OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}{4}} \)
\( \Longrightarrow \cos A+\cos B+\cos C=1+\frac rR \) \( \Longleftrightarrow \cos B+\cos C=\frac rR+2\sin^2\frac A2 \)
\( \Longleftrightarrow 2\cos\frac{B+C}2\cos\frac{B-C}2=\frac rR+2\sin^2\frac A2 \)
\( \Longleftrightarrow \left\ 2\sin\frac A2\cos\frac{B-C}{2}=\frac{r}{R}+2\sin^2\frac A2\ \right|\ \odot\ 2R^2 \)
\( \Longleftrightarrow 4R^2\sin\frac A2\left\(1-2\sin^2\frac{B-C}4\right\)=2Rr+4R^2\sin^2\frac A2 \)
\( \Longrightarrow OI^2=R^2-2Rr=R^2+4R^2\sin^2\frac A2-4R^2\sin\frac A2+8R^2\sin\frac A2\sin^2\frac{B-C}{4} \)
\( \Longleftrightarrow OI^2=R^2\left\(2\sin^2\frac A2-1\right\)^2+8R^2\sin\frac A2\sin^2\frac{B-C}{4} \)
\( \Longleftrightarrow OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}{4}} \)
Inlocuind pe \( OI \) si ridicand la patrat, inegalitatea de demonstrat devine:Virgil Nicula wrote:\( OI\ \ge\ 2R\cdot \sin\frac {|B-C|}{4}\sqrt {2\sin\frac A2} \)
\( \left(2\sin\frac A2-1\right)^2\ge 0 \), ceea ce este adevarat. Egalitatea are loc daca si numai daca \( A=60^{\circ} \)