Sir convergent?

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Sir convergent?

Post by Cezar Lupu »

Aratati ca sirul \( (a_{n})_{n\geq 1} \) definit prin \( a_{1}=1 \) si \( a_{n+1}=\frac{2}{n^{2}}\sum_{k=1}^{n}ka_{k} \) este strict crescator. Este sirul dat convergent?
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza matematica”