mateforum.ro
MateForum
http://www.mateforum.ro/
Sir convergent?
http://www.mateforum.ro/viewtopic.php?t=440
Page
1
of
1
Sir convergent?
Posted:
Thu Nov 01, 2007 10:38 pm
by
Cezar Lupu
Aratati ca sirul
\( (a_{n})_{n\geq 1} \)
definit prin
\( a_{1}=1 \)
si
\( a_{n+1}=\frac{2}{n^{2}}\sum_{k=1}^{n}ka_{k} \)
este strict crescator. Este sirul dat convergent?