Page 1 of 1

Sir convergent?

Posted: Thu Nov 01, 2007 10:38 pm
by Cezar Lupu
Aratati ca sirul \( (a_{n})_{n\geq 1} \) definit prin \( a_{1}=1 \) si \( a_{n+1}=\frac{2}{n^{2}}\sum_{k=1}^{n}ka_{k} \) este strict crescator. Este sirul dat convergent?