Sa se determine multimea punctelor \( P(z) \) din planul complex, pentru care:
a) \( \sqrt{10}\ \le\ |(3-i)z+3(2+i)|\ \le\ 2\sqrt{10}\ \ \wedge\ \ \frac{\pi}{4}\ \le\ \arg z\ \le\ \frac{5\pi}{4} \)
b) \( |z-i|=|2z+4|\ \ \wedge\ \ |z|=|2z-8i| \) .
Multimea punctelor din planul complex
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
mihai miculita
- Pitagora
- Posts: 93
- Joined: Mon Nov 12, 2007 7:51 pm
- Location: Oradea, Romania
Indicatie b)
\( z=x+iy; x,y\in \mathbb{R}\Rightarrow \left\{
|z-i|=|x+i(y-1)|=\sqrt{x^2+(y-1)^2}\\
|2z+4|=|(2x+4)+2iy|=\sqrt{(2x+4)^2+4y^2}\\
|z|=\sqrt{x^2+y^2}\\
|2x-8i|=|2z+2i(y-4)|=\sqrt{4x^2+4(y-4)^2} ;
\)
asa ca, sistemul de ecuatii b) este echivalent cu urmatorul:
\(
\left\{
x^2+(y-1)^2=(2x+4)^2+4y^2\\
x^2+y^2=4x^2+4(y-4)^2 \)\( \Leftrightarrow
\left\{
3x^2+3y^2+16x-2y-1=0\\
3x^2+3y^2-32y+64=0;
\)
unde: \( x,y\in\mathbb{R};\dots
\)
\( z=x+iy; x,y\in \mathbb{R}\Rightarrow \left\{
|z-i|=|x+i(y-1)|=\sqrt{x^2+(y-1)^2}\\
|2z+4|=|(2x+4)+2iy|=\sqrt{(2x+4)^2+4y^2}\\
|z|=\sqrt{x^2+y^2}\\
|2x-8i|=|2z+2i(y-4)|=\sqrt{4x^2+4(y-4)^2} ;
\)
asa ca, sistemul de ecuatii b) este echivalent cu urmatorul:
\(
\left\{
x^2+(y-1)^2=(2x+4)^2+4y^2\\
x^2+y^2=4x^2+4(y-4)^2 \)\( \Leftrightarrow
\left\{
3x^2+3y^2+16x-2y-1=0\\
3x^2+3y^2-32y+64=0;
\)
unde: \( x,y\in\mathbb{R};\dots
\)