\( \triangle ABC\ \Longrightarrow\ \frac 1{b+c}+\frac 1{c+a}+\frac 1{a+b}\ \le\ \frac{3(R+r)}{4S} \) .
Virgil Nicula
Inegalitate in triunghi
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
\( \frac {9}{4p}\stackrel{(CBS)}{\le}\sum\frac {1}{b+c}\le\sum\frac {b+c}{4bc}=\sum\frac {a(b+c)}{4abc}=\frac {\sum bc}{2abc}=\frac {p^2+r^2+4Rr}{8RS}\ \stackrel{(\mathrm{Gerretsen})}{\le}\frac {\left(4R^2+4Rr+3r^2\right)+r^2+4Rr}{8RS}= \)
\( \frac {(R+r)\cdot (R+r)}{2RS}\le\frac {\frac {3R}{2}\cdot (R+r)}{2RS}=\frac {3(R+r)}{4S}\ \Longleftrightarrow\ \underline{\overline{\left\|\ \frac {9}{4p}\ \le\ \sum\frac {1}{b+c}\ \le\ \frac {3(R+r)}{4S}\ \right\|}} \) . Retineti echivalenta
\( \underline{\overline{\left\|\ 4r(5R-r)\ \le\ ab+bc+ca\ \le\ 4(R+r)^2\ \right\|}}\ \Longleftrightarrow\ \overline{\underline{\left\|\ 16Rr-5r^2\ \le\ p^2\ \le\ 4R^2+4Rr+3r^2\ \right\|}} \) (Gerretsen).
Aplicatie. Sa se arate ca \( \left(\frac {p}{R+r}\right)^2\ \le\ \sum\frac {a^2}{bc}\ \le\ \frac {2R-r}{r} \) si \( \sum \frac {1}{a(b+c)}\ \ge \frac {9}{8(R+r)^2} \) .
\( \frac {(R+r)\cdot (R+r)}{2RS}\le\frac {\frac {3R}{2}\cdot (R+r)}{2RS}=\frac {3(R+r)}{4S}\ \Longleftrightarrow\ \underline{\overline{\left\|\ \frac {9}{4p}\ \le\ \sum\frac {1}{b+c}\ \le\ \frac {3(R+r)}{4S}\ \right\|}} \) . Retineti echivalenta
\( \underline{\overline{\left\|\ 4r(5R-r)\ \le\ ab+bc+ca\ \le\ 4(R+r)^2\ \right\|}}\ \Longleftrightarrow\ \overline{\underline{\left\|\ 16Rr-5r^2\ \le\ p^2\ \le\ 4R^2+4Rr+3r^2\ \right\|}} \) (Gerretsen).
Aplicatie. Sa se arate ca \( \left(\frac {p}{R+r}\right)^2\ \le\ \sum\frac {a^2}{bc}\ \le\ \frac {2R-r}{r} \) si \( \sum \frac {1}{a(b+c)}\ \ge \frac {9}{8(R+r)^2} \) .
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Demonstratie.Virgil Nicula wrote: Sa se arate ca \( \left(\frac {p}{R+r}\right)^2\ \le\ \sum\frac {a^2}{bc}\ \le\ \frac {2R-r}{r} \) si \( \sum\frac{1}{a(b+c)}\ge \frac{9}{8(R+r)^2} \) .
\( \left\(\frac{p}{R+r}\right\)^2=\frac{4p^2}{(4R^2+4Rr+3r^2)+r^2+4Rr}\ \stackrel{\mbox{(Gerretsen)}}{\le}\ \frac{4p^2}{p^2+r^2+4Rr}=\frac{(a+b+c)^2}{ab+bc+ca}\ \stackrel{\mbox{(C.B.S)}}{\le}\ \sum\frac{a^2}{bc} \)
\( \sum\frac{a^2}{bc}=\frac{a^3+b^3+c^3}{abc}=\frac{2p(p^2-6Rr-3r^2)}{4RS}=\frac{p^2-6Rr-3r^2}{2Rr}\ \stackrel{\mbox{(Gerretsen)}}{\le}\ \frac{4R^2+4Rr+3r^2-6Rr-3r^2}{2Rr}=\frac{2R-r}{r} \)
=====================================================================================
\( \sum\frac{1}{a(b+c)}\ \stackrel{\mbox{(C.B.S.)}}{\ge}\ \frac{9}{2(ab+bc+ca)}=\frac{9}{2\underline{\underline{p^2}}+2r^2+8Rr}\ \stackrel{\mbox{(Gerretsen)}}{\ge}\ \frac{9}{2(\underline{\underline{4R^2+4Rr+3r^2}})+2r^2+8Rr}=\frac{9}{8(R+r)^2} \)