Fie \( a,b\in\mathbb{R}, a<b \) si \( f,g:[a,b]\rightarrow\mathbb{R} \) functii continue. Aratati ca:
\( \(\int_a^bf(x)dx\)^2+\(\int_a^bg(x)dx\)^2\le \(\int_a^b\sqrt{f^2(x)+g^2(x)}dx\)^2 \)
C. Buse, ,,Traian Lalescu'' 2009
Inegalitate integrala
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)