Inegalitate polinomiala 4
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Inegalitate polinomiala 4
Daca a, b, c, d sunt numere reale cu \( a+b+c+d=0 \), atunci \( a^4+b^4+c^4+d^4+28abcd\ge 0. \)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Indicatie:
Putem presupune fara a pierde generalitatea ca \( a,b,c\ge 0 \) si \( d\le 0 \).
Atunci \( d=-a-b-c \) si inegalitatea devine \( a^4+b^4+c^4+(a+b+c)^4-28abc(a+b+c)\ge 0 \) cu a, b, c nenegative.
Putem presupune fara a pierde generalitatea ca \( a,b,c\ge 0 \) si \( d\le 0 \).
Atunci \( d=-a-b-c \) si inegalitatea devine \( a^4+b^4+c^4+(a+b+c)^4-28abc(a+b+c)\ge 0 \) cu a, b, c nenegative.
Last edited by Marius Mainea on Sat Dec 05, 2009 10:14 pm, edited 1 time in total.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Problema revine la \( \left(a^{4}+b^{4}+c^{4}-abc(a+b+c)\right)+\left(a+b+c\right)\left(\left(a+b+c\right)^{3}-27abc\right)\ge0 \), relatie adevarata tinand cont ca ambele cantitati din paranteze sunt pozitive (exercitiu).
Last edited by Claudiu Mindrila on Sat Dec 05, 2009 10:14 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact: