In planul cercului \( C\left(O,\ R\right) \) se considera un punct \( P \) a.i. \( 0<OP\le2R \). Aratati ca exista o unica pereche de puncte \( \left(P_{1},P_{2}\right) \) cu \( P_{1},\ P_{2}\in C\left(O,\ R\right) \) a. i. \( \vec{OP}=\vec{OP_{1}}+\vec{OP_{2}}. \)
Dan Stefan Marinescu, Viorel Cornea
Unicitatea unei perechi
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Unicitatea unei perechi
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)