Daca \( a, b \in \mathb{R} \), notam cu \( M(a,b)=\{n\in N*|[na]=[nb]\} \).
a) Sa se determine \( M(\frac{1}{2}, \frac{1}{3}) \);
b) Sa se arate ca \( M(a, b) \) este infinita \( \Leftrightarrow a=b \).
D.-S. Marinescu si V. Cornea, Hunedoara
Concursul Nicolae Paun editia 2009 subiectul II
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
b) Daca \( \|M(a,b)\|=\infty \) si presupun \( a\not=b \) luand de exemplu \( a<b \), avem ca exista un \( M\in\mathbb{N}^* \) a.i. \( M(b-a)>1 \) (iau de exemplu \( M=[\frac{1}{b-a}]+1 \)).
\( \forall n>M \), n natural avem evident\( n(b-a)>1 <=>[nb]-[na]+\{nb\}-\{na\}>1 \). Mai mult \( [nb]-[na]+1>[nb]-[na]+{nb}-{na}>1 =>[nb]>[na],\forall n\ge M \). Deci \( \|M(a,b)\|\le \|\{n\in\mathbb{N}^*,n\le M\}\|=M \), adica \( M\ge\infty \) contradictie. Implicatia inversa este banala.
\( \forall n>M \), n natural avem evident\( n(b-a)>1 <=>[nb]-[na]+\{nb\}-\{na\}>1 \). Mai mult \( [nb]-[na]+1>[nb]-[na]+{nb}-{na}>1 =>[nb]>[na],\forall n\ge M \). Deci \( \|M(a,b)\|\le \|\{n\in\mathbb{N}^*,n\le M\}\|=M \), adica \( M\ge\infty \) contradictie. Implicatia inversa este banala.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Solutia mea din concurs pentru b)
Presupunem ca \( a \neq b \). Cum \( a-b=\frac{\left\{ na\right\} -\left\{ nb\right\} }{n}\in\left(-\frac{1}{n},\ \frac{1}{n}\right) \), pentru o infinitate de \( n \)-uri, absurd.
Presupunem ca \( a \neq b \). Cum \( a-b=\frac{\left\{ na\right\} -\left\{ nb\right\} }{n}\in\left(-\frac{1}{n},\ \frac{1}{n}\right) \), pentru o infinitate de \( n \)-uri, absurd.
Last edited by Claudiu Mindrila on Sun Dec 13, 2009 10:02 pm, edited 2 times in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste