Numar de patru cifre.

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Numar de patru cifre.

Post by Marius Mainea »

Determinati \( \overline{abcd} \) , \( a,c\neq 0 \) pentru care \( \frac{\sqrt{\overline{abcd}}}{\sqrt{\overline{ab}}+\sqrt{\overline{cd}}}\in\mathbb{Q} \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( \sqrt{\overline{abcd}}\cdot\sqrt{\overline{ab}}\in\mathbb{Q} \) si \( \sqrt{\overline{abcd}}\cdot\sqrt{\overline{ab}}\in (\overline{ab0},\overline{ab5}) \)

Convine numai cazul \( \overline{abcd}\cdot\overline{ab}=\overline{ab4}^2 \) de unde \( \overline{abcd}=\overline{1681} \)

Mi se pare o demonstratie mai usoara decat cea de mai jos.
Last edited by Marius Mainea on Wed Dec 30, 2009 10:49 pm, edited 1 time in total.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

Post Reply

Return to “Clasa a VIII-a”