Inegalitate în triunghi

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Inegalitate în triunghi

Post by Mateescu Constantin »

Sa se arate ca in orice triunghi \( ABC \) are loc inegalitatea : \( \underline{\overline{\left\|\ \frac{m_a \cdot l_a}{h_a}\ +\ \frac{m_b\cdot l_b}{h_b}\ +\ \frac{m_c\cdot l_c}{h_c}\ \ge\ r_a\ +\ r_b\ +\ r_c\ \ \right\|}} \) .
Last edited by Mateescu Constantin on Tue May 11, 2010 9:54 pm, edited 6 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se foloseste inegalitatea \( m_a\ge \frac{b+c}{2}\cos\frac{A}{2} \)

Deasemenea \( r_a=\frac{S}{p-a} \)

\( l_a=\frac{2bc}{b+c}\cos\frac{A}{2}=\frac{2bc}{b+c}\sqrt{\frac{p(p-a)}{bc}} \)

\( h_a=\frac{2S}{a} \)

Asadar \( m_al_a\ge p(p-a) \)
si inegalitatea poate rezulta din

\( \sum\frac{ap(p-a)}{2}\ge S^2\sum\frac{1}{p-a} \) care este chiar egalitate.
Post Reply

Return to “Clasa a IX-a”