Page 1 of 1

Inegalitate în triunghi

Posted: Thu Dec 17, 2009 5:23 pm
by Mateescu Constantin
Sa se arate ca in orice triunghi \( ABC \) are loc inegalitatea : \( \underline{\overline{\left\|\ \frac{m_a \cdot l_a}{h_a}\ +\ \frac{m_b\cdot l_b}{h_b}\ +\ \frac{m_c\cdot l_c}{h_c}\ \ge\ r_a\ +\ r_b\ +\ r_c\ \ \right\|}} \) .

Posted: Thu Dec 17, 2009 6:06 pm
by Marius Mainea
Se foloseste inegalitatea \( m_a\ge \frac{b+c}{2}\cos\frac{A}{2} \)

Deasemenea \( r_a=\frac{S}{p-a} \)

\( l_a=\frac{2bc}{b+c}\cos\frac{A}{2}=\frac{2bc}{b+c}\sqrt{\frac{p(p-a)}{bc}} \)

\( h_a=\frac{2S}{a} \)

Asadar \( m_al_a\ge p(p-a) \)
si inegalitatea poate rezulta din

\( \sum\frac{ap(p-a)}{2}\ge S^2\sum\frac{1}{p-a} \) care este chiar egalitate.