Multimea punctelor din planul complex (2)

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Multimea punctelor din planul complex (2)

Post by Mateescu Constantin »

Fie \( M \) multimea punctelor din plan de afix \( z\in\mathbb{C}^{\ast} \), astfel incat \( |\mbox{Re} z|^{|z|}\ +\ |\mbox{Im} z|^{|z|}\ =\ |z|^{|z|} \).

Determinati \( M \) si reprezentati grafic multimea in plan.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Daca \( z=a+bi \), atunci ecuatia devine

\( |a|^{\sqrt{a^2+b^2}}+|b|^{\sqrt{a^2+b^2}}=(\sqrt{a^2+b^2})^{\sqrt{a^2+b^2}} \), \( a,b\in\mathbb{R} \)

si de aici \( sqrt{a^2+b^2}=2, \) deci \( M=\{z\in\mathbb{C}|\ |z|=2\} \).
Post Reply

Return to “Clasa a X-a”